我们提出BYOL-QUENPLORE,这是一种在视觉复杂环境中进行好奇心驱动的探索的概念上简单但一般的方法。Byol-explore通过优化潜在空间中的单个预测损失而没有其他辅助目标,从而学习了世界代表,世界动态和探索政策。我们表明,BYOL探索在DM-HARD-8中有效,DM-HARD-8是一种具有挑战性的部分可观察的连续操作硬探索基准,具有视觉富含3-D环境。在这个基准上,我们完全通过使用Byol-explore的内在奖励来纯粹通过增强外部奖励来解决大多数任务,而先前的工作只能通过人类的示威来脱颖而出。作为Byol-explore的一般性的进一步证据,我们表明它在Atari的十个最难的探索游戏中实现了超人的性能,同时设计比其他竞争力代理人要简单得多。
translated by 谷歌翻译
The acquisition of high-quality human annotations through crowdsourcing platforms like Amazon Mechanical Turk (MTurk) is more challenging than expected. The annotation quality might be affected by various aspects like annotation instructions, Human Intelligence Task (HIT) design, and wages paid to annotators, etc. To avoid potentially low-quality annotations which could mislead the evaluation of automatic summarization system outputs, we investigate the recruitment of high-quality MTurk workers via a three-step qualification pipeline. We show that we can successfully filter out bad workers before they carry out the evaluations and obtain high-quality annotations while optimizing the use of resources. This paper can serve as basis for the recruitment of qualified annotators in other challenging annotation tasks.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
季节预测$ \ unicode {x2013} $预测温度和降水量为2至6周$ \ unicode {x2013} $,对于有效的水分配,野火管理,干旱和缓解洪水至关重要。最近的国际研究工作提高了操作动力学模型的亚季节能力,但是温度和降水预测技能仍然很差,部分原因是代表动态模型内大气动力学和物理学的顽固错误。为了应对这些错误,我们引入了一种自适应偏置校正(ABC)方法,该方法将最新的动力学预测与使用机器学习的观察结合在一起。当应用于欧洲中等天气预测中心(ECMWF)的领先的亚季节模型时,ABC将温度预测技能提高了60-90%,在美国的连续美国,降水预测技能提高了40-69%基于Shapley队列的实用工作流程,用于解释ABC技能的提高并根据特定的气候条件识别机遇的高技能窗口。
translated by 谷歌翻译
我们基准了一个简单学习模型的亚季节预测工具包,该工具包优于操作实践和最先进的机器学习和深度学习方法。这些模型,由Mouatadid等人引入。 (2022),包括(a)气候++,这是气候学的一种适应性替代品,对于降水而言,准确性9%,比美国运营气候预测系统(CFSV2)高9%,熟练250%; (b)CFSV2 ++,一种学习的CFSV2校正,可将温度和降水精度提高7-8%,技能提高50-275%; (c)持久性++是一种增强的持久性模型,将CFSV2预测与滞后测量相结合,以将温度和降水精度提高6-9%,技能提高40-130%。在整个美国,气候++,CFSV2 ++和持久性++工具包始终优于标准气象基准,最先进的机器和深度学习方法,以及欧洲中等范围的天气预报集合中心。
translated by 谷歌翻译